Abstract

Computational fluid dynamics of the air flow in the human nasal cavities, starting from patient-specific Computer Tomography (CT) scans, is an important tool for diagnostics and surgery planning. However, a complete and systematic assessment of the influence of the main modelling assumptions is still lacking. In designing such simulations, choosing the discretization scheme, which is the main subject of the present work, is an often overlooked decision of primary importance. We use a comparison framework to quantify the effects of the major design choices. The reconstructed airways of a healthy, representative adult patient are used to set up a computational study where such effects are systematically measured. It is found that the choice of the numerical scheme is the most important aspect, although all varied parameters impact the solution noticeably. For a physiologically meaningful flow rate, changes of the global pressure drop up to more than 50% are observed; locally, velocity differences can become extremely significant. Our results call for an improved standard in the description of this type of numerical studies, where way too often the order of accuracy of the numerical scheme is not mentioned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.