Abstract

AbstractBlack carbon (BC) aerosol particles in the Arctic heat the atmosphere and snow/ice surfaces and may strengthen the snow-albedo feedback that amplifies Arctic warming. Model simulations of BC concentrations in the Arctic depend strongly on the representation of microphysical processes such as aging, activation, and wet removal. Most BC modeling studies have classified BC particles into hydrophobic BC, which cannot form cloud droplets, and hydrophilic BC, which can form cloud droplets, by assuming a globally constant critical supersaturation threshold value (Sthre), without considering its consistency with cloud maximum supersaturation (Smax). Here we show that it is essential to consider the consistency of Sthre with Smax in global model simulations to reduce uncertainties in near-surface ambient BC concentrations in the Arctic. Previous studies often obtained good agreement between simulated and observed near-surface Arctic BC mass concentrations when a low Sthre (~0.1%) was assumed in their models. However, this Sthre may be too low (activation and wet removal of BC may be underestimated) for the Arctic, because some recent observations and our model simulations suggest that Smax may actually be higher (~0.3%) there. We also demonstrate that spatially varying Sthre values and their consistency with Smax, which previous studies did not consider, must be represented in models for more accurate estimation of BC budget in the Arctic. Because both Smax and BC-aging speed depend on climatic conditions, our findings are an important step toward better simulations of BC impacts on past, present, and future Arctic climates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call