Abstract

AbstractTremendous recent efforts have been made toward developing highly active oxygen reduction reaction (ORR) catalysts with a minimized usage of noble metal Pt by using Pt alloys and core–Pt shell structures. A main computational framework for such a goal has been the search for a new material with the *OH binding slightly weaker than Pt based on the conventional volcano relation of ORR activity versus *OH binding energy. In this work, by using carbides and nitrides as core materials, we demonstrate that the conventional scaling relation between *OH and *O can be completely broken owing to a significant ligand–Pt orbital interactions in the core–Pt shell structure, and in such cases, the usual catalyst design strategy of tuning the *OH binding energy of Pt to a weaker leg of the volcano can mislead the prediction. In these cases, one needs to consider all reaction intermediates to appropriately predict the activity of ORR catalysts. We additionally show that, although the transition metal nitrides and carbides studied here as core materials all induce an undesired tensile strain to the Pt overlayers with a stronger *OH binding, a proper tuning of the ligand (core) effects in the Pt1 and Pt2 overlayers core–shell configurations can lead to an activity comparable to or slightly better than Pt.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.