Abstract

Class II transactivator (CIITA), the master regulator of MHC class II (MHC-II) gene transcription, shows a complex behavior in terms of self-association, nucleo-cytoplasmic transport and MHC-II gene transactivation. Here, we analyzed the mechanisms of dominant-negative function and nucleo-cytoplasmic transport of CIITA with emphasis on the role of the C-terminal leucine-rich-repeat (LRR) region in these processes. First, we determined nucleo-cytoplasmic transport of endogenous CIITA and thus validated results obtained with epitope-tagged CIITA constructs. LRR mutations in potential protein-protein contact positions lead to either completely blocked or reduced nuclear import, but can also give rise to increased nuclear export. Surprisingly, N-terminally truncated CIITA mutants show dominant-negative inhibition of wild-type CIITA, whether they are located in the nucleus or in the cytoplasm. Integrity of the LRR is necessary for the dominant-negative function of both types of mutants. LRR mutations are dominant over the effect of an exogenously added N-terminal nuclear localization signal (NLS) leading to cytoplasmic localization. Taken together, our results show that the LRR regulate the function of one or several NLS within CIITA, and control both nuclear import and export. Self-association is not affected in these mutants; we therefore suggest that interaction of the LRR with an unknown protein partner may be necessary for import and transactivation function of CIITA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.