Abstract
Vibrational energy flow in proteins was studied by monitoring the time-resolved anti-Stokes ultraviolet resonance Raman scattering of three myoglobin mutants in which a Trp residue substitutes a different amino acid residue near heme. The anti-Stokes Raman intensities of the Trp residue in the three mutants increased with similar rates after depositing excess vibrational energy at heme, despite the difference in distance between heme and each substituted Trp residue along the main chain of the protein. This indicates that vibrational energy is not transferred through the main chain of the protein but rather through atomic contacts between heme and the Trp residue. Distinct differences were observed in the amplitude of the band intensity change between the Trp residues at different positions, and the amplitude of the band intensity change exhibits a correlation with the extent of exposure of the Trp residue to solvent water. This correlation indicates that atomic contacts between an amino acid residue and solvent water play an important role in vibrational energy flow in a protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.