Abstract

The dissipation mechanism of the magnetic energy in turbulent collisionless space and astrophysical plasmas is still not well understood. Its investigation requires efficient kinetic simulations of the energy transfer in collisionless plasma turbulence. In this respect, hybrid-kinetic simulations, in which ions are treated as particles and electrons as an inertial fluid, have begun to attract a significant interest recently. Hybrid-kinetic models describe both ion- and electron scale processes by ignoring electron kinetic effects so that they are computationally much less demanding compared to fully kinetic plasma models. Hybrid-kinetic codes solve either the Vlasov equation for the ions (Eulerian Vlasov-hybrid codes) or the equations of motion of the ions as macro-particles [Lagrangian particle-in-cell (PIC)-hybrid codes]. They consider the inertia of the electron fluid using different approximations. We check the validity of these approximations by employing our recently massively parallelized three-dimensional PIC-hybrid code Code Hybrid with Inertial Electron Fluid (CHIEF), which considers the electron inertia without any of the common approximations. In particular, we report the results of simulations of two-dimensional collisionless plasma turbulence. We conclude that the simulation results obtained using hybrid-kinetic codes, which use approximations to describe the electron inertia, need to be interpreted with caution. We also discuss the parallel scalability of CHIEF, to the best of our knowledge, the first PIC-hybrid code, which without approximations describes the inertial electron fluid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call