Abstract
<p>Plasma turbulence is ubiquitous in space and astrophysical environments and believed to play important role in a variety of space and astrophysical phenomena ranging from the entry of  energetic particles in Earth's magnetic environment and non-adiabatic heating of the solar wind plasma to star formation in inter stellar medium. Space and astrophysical plasmas are usually magnetized and collisionless. An unsolved problem in turbulent collisionless plasmas, e.g., the solar wind, is the mechanism of dissipation of macroscopic energy into heat without collisional dissipation. A number of observational and simulation studies show that kinetic sale current sheets formed self-consistently in collisionless plasma turbulence are the sites of the dissipation. Mechanisms of dissipation in current sheets are, however,  not well understood. Free energy sources in and equilibrium structure of current sheets are important factors in the determination of the dissipation mechanism. Recent PIC hybrid simulations (with mass-less electrons) of collisionless plasma turbulence show that current sheets thin down to below ion inertial length with current carried mainly by electrons. This can lead  to embedded current sheet structure which was recently studied analytically.  We carry out 2-D PIC-hybrid simulations (with finite-mass electrons) using a recently developed code CHIEF to study the free energy sources and structure of current sheets formed in turbulence. In this paper, we focus on  the spatial gradient driven free energy sources and embedded structure of current sheets.  The results are compared to the results obtained from hybrid simulations with mass-less electrons. </p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.