Abstract
Let [Formula: see text] be the edge monomial ideal of a graph [Formula: see text], whose vertex set is [Formula: see text]. [Formula: see text] is implosive if the symbolic Rees algebra [Formula: see text] of [Formula: see text] has a minimal system of generators [Formula: see text] where [Formula: see text] are square-free monomials. We give some structural properties of implosive graphs and we prove that they are closed under clique-sums and odd subdivisions. Furthermore, we prove that universally signable graphs are implosive. We show that odd holes, odd antiholes and some Truemper configurations (prisms, thetas and even wheels) are implosive. Moreover, we study excluded families of subgraphs for the class of implosive graphs. In particular, we characterize which Truemper configurations and extensions of odd holes and antiholes are minimal nonimplosive.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.