Abstract
Abstract We study the symbolic powers of square-free monomial ideals via symbolic Rees algebras and methods in prime characteristic. In particular, we prove that the symbolic Rees algebra and the symbolic associated graded algebra are split with respect to a morphism that resembles the Frobenius map and that exists in all characteristics. Using these methods, we recover a result by Hoa and Trung that states that the normalized $a$-invariants and the Castelnuovo–Mumford regularity of the symbolic powers converge. In addition, we give a sufficient condition for the equality of the ordinary and symbolic powers of this family of ideals and relate it to Conforti–Cornuéjols conjecture. Finally, we interpret this condition in the context of linear optimization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.