Abstract
Tertiary protons with birth energies from ∼27 to 30.8 MeV result from the implosion of ignition-scale inertial confinement fusion targets, such as those planned for the National Ignition Facility (NIF). Measurement of the tertiaries’ slowing can provide a determination of the imploded areal density of the fuel capsule, as well as implosion asymmetry that results from anisotropy of the areal density and plasma temperature. In order to determine the utility of tertiaries for all phases of the NIF, we analyze three representative cases: a gas capsule (0.7 kJ yield); a cryogenic fuel capsule that fails to ignite (15 kJ); and a cryogenic fuel capsule that ignites and burns (13 000 kJ). In each case, tertiaries escape from the capsule and convey critical information about implosion dynamics. In addition, we show that for some gas-capsule implosions anticipated on OMEGA, tertiaries may be the only species of energetic charged particles that can determine the fuel areal density. Presently, we are building a charge-coupled device (CCD)-based charged particle spectrometer for OMEGA and for NOVA. In addition to the tertiaries, the spectrometers are sensitive to a variety of the energetic charged particles, such as knock-on protons, deuterons, and tritons, and He3-burnup protons. In fact the latter set of charged particles will usually be the dominant signal. We will describe the basic features of the spectrometers and the measured response of the CCDs to 1–5 MeV protons, 1–5 MeV alphas, and 14 MeV neutrons (and associated gammas), the latter constitute the principal source of noise. This work is done in collaboration with C. K. Li, D. Hicks, and F. Seguin of MIT; with B. Burke of LL/MIT; with M. Cable, S. Pollaine, S. Haan, T. Bernat, T. Phillips, and J. Kilkenny of LLNL; with J, Knauer, S. Cremer, C. Verdon, and B. Kremens of University of Rochester; and with C. Ruiz and R. Leeper of SNL. This work is supported in part by LLNL Subcontract B313875 and University of Rochester Subcontract 410025-G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.