Abstract

The preliminary design for a state-of-the-art diagnostic that will measure a broad energy spectrum of charged particles generated in the OMEGA Upgrade facility is investigated. Using a set of photodiodes ({approximately}10) and a 0.8 Tesla permanent magnet, the diagnostic will uniquely determine particle energies and identities from 0.2 MeV up to the maximum charged particle energies (10.6 MeV tritons, 12.5 MeV deuterons and 17.4 MeV protons). With its high density picture elements, each photodiode has 10{sup 6} single-hit detectors, giving the spectrometer a dynamic range of 1 {minus} 10{sup 5} particles/shot. For example, in the case of a DT yield of 10{sup 9} neutrons, about 100 knock-on charged particles will be detected when the spectrometer aperture is 60 cm from the implosion. Furthermore, the measurement of knock-on D and T spectra will allow {rho}R`s up to 0.15 g/cm{sup 2} to be measured (for a 1 keV plasma), or 0.3 g/cm{sup 2}2 if hydrogen doping is used. In addition, the yield and slowing down of secondary protons may be used to determine {rho}R up to 0.3 g/cm{sup 2}. Significantly, this diagnostic will also directly measure the DD fusion yield and energy degradation of nascent 3 MeV protons. By using two such compact spectrometers to measure the yield and spectra on widely separated ports around the OMEGA Upgrade target chamber, the implosion and bum symmetry can be determined. Furthermore, the ion temperature, and, in principle, even the electron temperature can be measured. The diagnostic and its development will be fully tested at several critical steps, utilizing 0.2-16 MeV protons (and several other charged particles and neutrons) from our absolutely calibrated Cockcroft-Walton facility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call