Abstract
In earlier work, the second author showed that a closed subset of a polynomial functor can always be defined by finitely many polynomial equations. In follow-up work on GL∞\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\ ext {GL}}_\\infty $$\\end{document}-varieties, Bik–Draisma–Eggermont–Snowden showed, among other things, that in characteristic zero every such closed subset is the image of a morphism whose domain is the product of a finite-dimensional affine variety and a polynomial functor. In this paper, we show that both results can be made algorithmic: there exists an algorithm implicitise\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{implicitise}$$\\end{document} that takes as input a morphism into a polynomial functor and outputs finitely many equations defining the closure of the image; and an algorithm parameterise\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\ extbf{parameterise}$$\\end{document} that takes as input a finite set of equations defining a closed subset of a polynomial functor and outputs a morphism whose image is that closed subset.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have