Abstract

To reduce the error induced by overfitting or underfitting in predicting non-invasive fasting blood glucose (NIBG) levels using photoplethysmography (PPG) data alone, we previously demonstrated that incorporating HbA1c led to a notable 10% improvement in NIBG prediction accuracy (the ratio in zone A of Clarke's error grid). However, this enhancement came at the cost of requiring an additional HbA1c measurement, thus being unfriendly to users. In this study, the enhanced HbA1c NIBG deep learning model (blood glucose level predicted from PPG and HbA1c) was trained with 1494 measurements, and we replaced the HbA1c measurement (explicit HbA1c) with "implicit HbA1c" which is reversely derived from pretested PPG and finger-pricked blood glucose levels. The implicit HbA1c is then evaluated across intervals up to 90 days since the pretest, achieving an impressive 87% accuracy, while the remaining 13% falls near the CEG zone A boundary. The implicit HbA1c approach exhibits a remarkable 16% improvement over the explicit HbA1c method by covering personal correction items automatically. This improvement not only refines the accuracy of the model but also enhances the practicality of the previously proposed model that relied on an HbA1c input. The nonparametric Wilcoxon paired test conducted on the percentage error of implicit and explicit HbA1c prediction results reveals a substantial difference, with a p-value of 2.75 × 10-7.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.