Abstract

Time fractional diffusion equations are used when attempting to describe transport processes with long memory where the rate of diffusion is inconsistent with the classical Brownian motion model. In this paper we develop an implicit unconditionally stable numerical method to solve the one-dimensional linear time fractional diffusion equation, formulated with Caputo’s fractional derivative, on a finite slab. Several numerical examples of interest are also included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.