Abstract
This paper is devoted to the Cauchy problems for the one-dimensional linear time-fractional diffusion equations with $\partial^{\alpha}_{t}$ the Caputo fractional derivative of order $\alpha\in(0,1)$ in the variable t and time-degenerate diffusive coefficients $t^{\beta}$ with $\beta >1-\alpha$. The solutions of Cauchy problems for the one-dimensional time-fractional degenerate diffusion equations with the time-fractional derivative $\partial^{\alpha}_{t}$ of order $\alpha\in(0,1)$ in the variable $t$, are shown. In the "Problem statement and main results" section of the paper, the solution of the time-fractional degenerate diffusion equation in a variable coefficient with two different initial conditions are considered. In this work, a solution is found by using the Kilbas-Saigo function $E_{\alpha,m,l}(z)$ and applying the Fourier transform $F$ and inverse Fourier transform $\mathcal{F}^{-1}$. Convergence of solution of problem 1 and problem 2 are proven using Plancherel theorem. The existence and uniqueness of the solution of the problem are confirmed. 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Mathematics, Mechanics and Computer Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.