Abstract

Implicit–explicit (IMEX) linear multistep methods are examined with respect to their suitability for the integration of fast-wave–slow-wave problems in which the fast wave has relatively low amplitude and need not be accurately simulated. The widely used combination of trapezoidal implicit and leapfrog explicit differencing is compared to schemes based on Adams methods or on backward differencing. Two new families of methods are proposed that have good stability properties in fast-wave–slow-wave problems: one family is based on Adams methods and the other on backward schemes. Here the focus is primarily on four specific schemes drawn from these two families: a pair of Adams methods and a pair of backward methods that are either (i) optimized for third-order accuracy in the explicit component of the full IMEX scheme, or (ii) employ particularly good schemes for the implicit component. These new schemes are superior, in many respects, to the linear multistep IMEX schemes currently in use. The behavior of these schemes is compared theoretically in the context of the simple oscillation equation and also for the linearized equations governing stratified compressible flow. Several schemes are also tested in fully nonlinear simulations of gravity waves generated by a localized source in a shear flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call