Abstract

Abstract This paper considers implications of different forms of the ensemble transformation in the ensemble square root filters (ESRFs) for the performance of ESRF-based data assimilation systems. It highlights the importance of using mean-preserving solutions for the ensemble transform matrix (ETM). The paper shows that an arbitrary mean-preserving ETM can be represented as a product of the symmetric solution and an orthonormal mean-preserving matrix. The paper also introduces a new flavor of ESRF, referred to as ESRF with mean-preserving random rotations. To investigate the performance of different solutions for the ETM in ESRFs, experiments with two small models are conducted. In these experiments, the performances of two mean-preserving solutions, two non-mean-preserving solutions, and a traditional ensemble Kalman filter with perturbed observations are compared. The experiments show a significantly better performance of the mean-preserving solutions for the ETM in ESRFs compared to non-mean-preserving solutions. They also show that applying the mean-preserving random rotations prevents the buildup of ensemble outliers in ESRF-based data assimilation systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.