Abstract

Microplastics (MP) and antibiotics coexist in the environment and their combined exposure represents a source of increasing concern. MP may act as carriers of antibiotics because of their sorption capacity. Knowledge of the interactions between them may help improve understanding of their migration and transformation. In this work, the adsorption behaviour of a group of sulfonamides and their acetylated metabolites on different sizes of polyamide (PA) and polystyrene (PS) MP were investigated and compared. Sulfonamides were adsorbed on both MP (qmax up to 0.699 and 0.184 mg/g, for PA and PS, respectively) fitting to a linear isotherm model (R2 > 0.835). A low particle size and an acidic and salinity medium significantly enhances the adsorption capacity of sulfonamides (i.e. removal of sulfamethoxazole increased from 8 % onto 3 mm PA pellets to 80 % onto 50 mm of PA pellets). According to characterization results, adsorption mechanism is explained by pore filling and hydrogen bonds (for PA) and hydrophobic interactions (for PS). After adsorption, surface area was increased in both MP as result of a potential ageing of the particles and the intensity of XRD peaks was higher denoting a MP structure more amorphized. Metabolites were adsorbed more efficiently than their parent compounds on PS while the opposite effect was observed on PA explained by the acetylation of the amine group and, subsequently the reduction of hydrogen bond interactions. Although the dissolved organic matter inhibits sulfonamides adsorption, removal up to 65.2 % in effluent wastewater and up to 72.1 % in surface water were observed in experiments using real matrices denoting the role of MP as vectors of sulfonamide antibiotics in aquatic media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.