Abstract

We study the constraints implied by partial wave unitarity on new physics in the form of spin-zero di-boson resonances at LHC. We derive the scale where the effective description in terms of the SM supplemented by a single resonance is expected to break down depending on the resonance mass and signal cross section. Likewise, we use unitarity arguments in order to set perturbativity bounds on renormalizable UV completions of the effective description. We finally discuss under which conditions scalar di-boson resonance signals can be accommodated within weakly coupled models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.