Abstract

Oligoclonal bands (OCB) analysis is the reference standard for detecting an intrathecal IgG synthesis. Alongside OCB, free light chains kappa (FLCκ) are considered an additional sensitive biomarker for determining patterns 2 or 3, indicating intrathecal Ig synthesis. However, kFLC IF is not suitable for detecting a monoclonal pattern 5. The primary aim of this study was to evaluate the impact of incorporating FLCκ analysis into routine cerebrospinal fluid (CSF) diagnostics instead of OCB testing on the rate of missed monoclonal IgG detection. A two-center retrospective biomarker study was conducted. OCB were identified using isoelectric focusing in polyacrylamide gels followed by silver staining or in agarose gels followed by immunofixation. FLCκ were quantified using nephelometry and FLCκ assay (Siemens). Out of a combined total of 17,755 OCB analyses conducted between 2011 and 2021, a subset of 269 cases (1.5 %) exhibited pattern 5. 98 samples (36 %), which included 18 samples with intrathecal inflammation as determined by additional OCB pattern 2 were included in the FLCκ analysis. Of those, 16 (89 %) had intrathecal FLCκ synthesis. While FLCκ offers a promising avenue for detecting an intrathecal inflammation, the pattern 5, though rare, remains a valuable additional finding of OCB analysis. A combined approach of FLCκ and OCB analysis is recommended for a comprehensive assessment of the humoral intrathecal immune response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.