Abstract
AbstractWhile the source of the fast solar wind is known to be coronal holes, the source of the slow solar wind has remained a mystery. Long time scale trends in the composition and charge states show strong correlations between solar wind velocity and plasma parameters, yet these correlations have proved ineffective in determining the slow wind source. We take advantage of new high time resolution (12 min) measurements of solar wind composition and charge state abundances at L1 and previously identified 90 min quasiperiodic structures to probe the fundamental timescales of slow wind variability. The combination of new high temporal resolution composition measurements and the clearly identified boundaries of the periodic structures allows us to utilize these distinct solar wind parcels as tracers of slow wind origin and acceleration. We find that each 90 min (2000 Mm) parcel of slow wind has near‐constant speed yet exhibits repeatable, systematic charge state and composition variations that span the entire range of statistically determined slow solar wind values. The classic composition‐velocity correlations do not hold on short, approximately hourlong, time scales. Furthermore, the data demonstrate that these structures were created by magnetic reconnection. Our results impose severe new constraints on slow solar wind origin and provide new, compelling evidence that the slow wind results from the sporadic release of closed field plasma via magnetic reconnection at the boundary between open and closed flux in the Sun's atmosphere.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have