Abstract

Hormesis has been defined as a dose-response relationship which depicts improvement in some endpoint (increased metabolic rates, reduction in tumor incidence, etc.) at low doses of a toxic compound followed by a decline in the endpoint at higher doses. The existence of hormetic responses to carcinogenic agents has several implications for the bioassay and hazard assessment of carcinogens. To be capable of detecting and statistically testing for hormetic or other nonlinear dose-response functions, current study designs must be modified to include lower doses and sufficiently large numbers of animals. In addition, improved statistical methods for testing nonlinear dose-response relationships will have to be developed. Research integrating physiologically-based pharmacokinetic model descriptions of target dose with mechanistic data holds the greatest promise for improving the description of the dose-response curve at low doses. The 1996 Proposed Carcinogen Risk Assessment Guidelines encourage the use of mechanistic data to improve the descriptions of the dose-response curve at low doses, but do not distinguish between the types of nonlinear dose-response curves. Should this refined approach lead to substantial support for hormesis in carcinogenic processes, future guidelines will need to provide guidance on establishing safe doses and communicating the results to the public.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call