Abstract
Anthropogenic regulation of hydrographs is a widespread approach to river management; however, the effects of river regulation on habitat conditions and aquatic communities have rarely been studied. In this study, we analyzed the physical, chemical, and biological data from the lower Nakdong River in South Korea from 2005 to 2009 before weir construction and from 2012 to 2016 after weir construction. A partial least square path model (PLS-PM) was applied to delineate the complex interrelationships of diatoms and cyanobacteria with physicochemical parameters, nutrients, zooplankton grazing, and hydrological parameters. Inferential modeling using the hybrid evolutionary algorithm (HEA) allowed the identification of differences in the importance and threshold conditions of population dynamics drivers of diatoms and cyanobacteria before and after flow regulation. The annually averaged trajectories of limnological variables displayed significant shifts in seasonality and magnitudes of phytoplankton, zooplankton, and nutrient concentrations between the two periods. The results of PLS-PM indicated that, after flow regulation, diatoms and cyanobacteria were directly affected by nutrients and zooplankton densities and the path coefficients of hydrological parameters decreased or even were insignificant. The inferential models suggested that diatom dynamics were essentially shaped by threshold conditions of water temperature (WT) and pH before regulation, but mainly by those of rotifers (below 51.1 ind. L−1) after regulation. As for cyanobacteria dynamics, WT was identified as a critical threshold condition before and after regulation, and the threshold of PO4− concentration above 145.4 L−1 was identified as the reason for occasional blooms during the post-regulation period. Overall, the results suggest that flow regulation gradually alters habitat conditions typically of rivers to those of stagnant waters. These findings must be taken into account for sustainable management strategies of regulated rivers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.