Abstract
AbstractAt nearly 2,900‐km depth, the core‐mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron‐alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure, and seismic velocities. Here we resolve the thermodynamic parameters of (Mg,Fe)O and compute the melting phase relations of the MgO‐FeO binary system at CMB conditions. Based on this phase diagram, we revisit iron infiltration into solid ferropericlase along the CMB by morphological instability and find that the length scale of infiltration is comparable with the high electrical conductivity layer inferred from core nutations. We also compute the (Mg,Fe)O‐SiO2 pseudo‐binary system and find that the solidus melting temperatures near the CMB decrease with FeO and SiO2 content, becoming potentially important for ultralow velocity zones. Therefore, an ultralow velocity zone composed of solid‐state bridgmanite and ferropericlase may be relatively enriched in MgO and depleted in SiO2 and FeO along a hot CMB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.