Abstract

Ultra-low velocity zones (ULVZs) are thin patches of material with strongly reduced seismic wave speeds situated on top of the core-mantle boundary (CMB). A common phase used to detect ULVZs is SPdKS (SKPdS), an SKS wave with a short diffracted P leg along the CMB. Most previous efforts have examined ULVZ properties using 1D waveform modeling approaches. We present waveform modeling results using the 2.5D finite difference algorithm PSVaxi allowing us better insight into ULVZ structure and location. We characterize ULVZ waveforms based on ULVZ elastic properties, shape, and position along the SPdKS raypath. In particular, we vary the ULVZ location (e.g. source or receiver side), ULVZ topographical profiles (e.g. boxcar, trapezoidal, or Gaussian) and ULVZ lateral scale along great circle path (2.5o, 5o, 10o). We observe several waveform effects absent in 1D ULVZ models and show evidence for waveform effects allowing the differentiation between source and receiver side ULVZs. Early inception of the SPdKS/SKPdS phase is difficult to detect for receiver-side ULVZs with maximum shifts in SKPdS initiation of ∼3o in epicentral distance, whereas source-side ULVZs produce maximum shifts of SPdKS initiation of ∼5o, allowing clear separation of source- versus receiver-side structure. We present a case study using data from up to 300 broadband stations in Turkey recorded between 2005 and 2010. We observe a previously undetected ULVZ in the southern Atlantic Ocean region centered near 45o S, 12.5oW, with a lateral scale of ∼3°, VP reduction of 10%, VS reduction of 30%, and density increase of 10% relative to PREM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call