Abstract

Tomato yellow leaf curl virus (TYLCV) poses serious threat to tomato production worldwide, and the vector, Bemisia tabaci, plays a key role in the transmission of this virus. However, the molecular mechanisms underlying the transmission remain poorly understood. In this study, firstly, we identified the whitefly proteins that presumably interact with TYLCV coat protein (CP) using split-ubiquitin yeast two-hybrid system. Next, we conducted GST pull-down and immunofluorescence to examine the potential interaction between TYLCV CP and one of the proteins identified, namely vesicle associated membrane protein-associated protein B (VAPB), an protein abundantly expressed in whitefly midgut. Further experiments demonstrated that VAPB was significantly up-regulated upon virus acquisition, and silencing VAPB led to a significant increase of relative virus quantity in whitefly haemolymph and salivary glands, as well as an increase of TYLCV transmission efficiency. These findings indicate an important role of VAPB in the transmission of TYLCV by whiteflies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call