Abstract

To verify the possible involvement of lipids and several other compounds including hydrogen peroxide (H(2)O(2)) and glyceraldehyde-3-phosphate dehydrogenase (G3PDH) in the response of Hordeum vulgare to early potassium deprivation, plants were grown in hydroponic conditions for 30d with a modified Hewitt nutrient solution containing 3mM K(+). They were then incubated for increasing periods of time ranging from 2 to 36h in the same medium deprived of K(+). In contrast to leaves, root K(+) concentration showed its greatest decrease after 6h of treatment. The main lipids of the control barley roots were phospholipids (PL), representing more than 50% of the total lipids. PL did not change with treatment, whereas free sterols (FS) decreased following K(+) deprivation, showing a reduction of approximately 17% after 36h. With respect to the individual PL, 30h K(+) deprivation led to a reduction in phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI) levels, whereas phosphatidylglycerol (PG), phosphatidylethanolamine (PE), and phosphatidic acid (PA) levels increased. The maximum PA accumulation and the highest phospholipase D (PLD) activation, estimated by an accumulation of phosphatidylbutanol (PtBut), were observed after 24h of K(+) starvation. At the root level, H(2)O(2) showed the maximum value after 6h of incubation in -K solution. In parallel, G3PDH activity reached its minimum. On the basis of a concomitant stimulation of PLD activity and, consequently, PA accumulation, enhancement of H(2)O(2) production, and inhibition of G3PDH activity, we suggest a possible involvement of these three compounds in an early response to K(+) deprivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.