Abstract
Prolonged exposure to glucocorticoids (GC) disrupts neuronal architecture, hinders neuroplasticity, and triggers neuroinflammation. However, the precise underlying mechanisms have not been studied yet. The current study aimed to investigate the mechanisms of GC-induced neuroinflammatory effects by stimulating the miRNA let7b, aryl hydrocarbon receptor (AhR)/ARNT, HMGB1/RAGE, and other downstream targets. Rats were divided into 4 groups; control, GC (20 mg/kg, S.C.), 3,3′-diindolylmethane (DIM) 50 mg/kg/day, and donepezil (DNZ) 4 mg/kg/day for 21 days. Behavioral tests and histopathological investigations of cerebral cortex were done. Let7b, AhR, ARNT, and cytochrome A1A were estimated using qRT-PCR. HMGB1, RAGE, NQO1and NRF2 were estimated using ELISA, whereas GFAP and TNF-α by immunohistochemical analysis. Keap1 was estimated using Western technique. GSH and TBARS were assessed by colorimetric assay. In the current study, GC elevates the gene expressions of let7b, AhR, ARNT, and cytochrome A1A, along with the protein contents of HMGB1, RAGE, NQO1and NRF2. In addition, GC showed increased GFAP, TNF-α, and TBARS, together with decreased Keap1 and GSH. On the other side, DIM and DNZ reversed all the above-mentioned findings. Collectively, the study documents for the first time the effect of GC in upregulating let7b and activating the AhR/ARNT loop which subsequently stimulates RAGE/HMGB1 and NRF2/Keap1 cascade leading to stimulating further inflammatory and oxidative signaling pathways. Certainly, these effects are responsible for the behavioral fluctuations, the brain’s histological disruption, altered neuroplasticity, and neuroinflammation induced by GC. Moreover, DIM conquers GC-induced neuroinflammation due to its characteristic role in modulating AhR and its downstream targets.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have