Abstract
Deep brain stimulation of the anterior nucleus of the thalamus has been proposed as novel therapy to treat intractable epilepsy. To optimize this approach, we proposed to study the involvement of this nucleus in a non-human primate model of mesial temporal lobe seizure.Two macaques were implanted with one chronic electrode into the hippocampus allowing to monitor the ictal activity. Neurons of the anterior nucleus of the thalamus were recorded with a microelectrode inserted acutely. To induce seizures, penicillin was injected into the hippocampus and neuronal activities of the anterior nucleus were analyzed during ictal and interictal periods. The effects of the chemical neuromodulation of the anterior nucleus on the ictal hippocampal activities were studied and electron microscopy analysis was carried out to study morphological modifications induced in the anterior nucleus of the thalamus. Our results demonstrate that the anterior nucleus of the thalamus is directly involved in the pathophysiology of induced seizures since: (1) Electrophysiological study showed an heterogenous excitation during seizure characterized by the appearance of 2 types of neuronal firing response; (2) chemical neuromodulation of the anterior nucleus of the thalamus changed the severity of seizures; (3) morphological modification of the ultrastructure as well as a reduction of synapse density were observed within the ipsilateral anterior nucleus of the thalamus. This study demonstrates that the anterior nucleus of the thalamus is part of the epileptic network activated during temporal lobe seizures and suggests that this nucleus would be valid target for seizure control using deep brain stimulation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have