Abstract

BackgroundWetlands and irrigated agricultural crops create potential breeding sites for Anopheles mosquitoes, leading to a heterogeneity in malaria transmission. In agricultural areas, heterogeneity of malaria transmission is often associated with the presence of hotspots consisting of localized clusters of higher transmission intensity. This study aims to identify micro-geographic hotspots of malaria transmission in an agricultural setting using a multidisciplinary approach.MethodsTwo cross-sectional surveys were conducted at the end of the dry season and at the peak of the rainy season in rural and urban sites in Bouna, northeastern Côte d'Ivoire. A total of 296 individuals from 148 farming households were randomly selected and sociological, geographical, entomological, and clinical data as well as blood samples were collected during each visit. Parasitological data and Anopheles exposure (measured using entomological and immunological methods) were compared with demographic, agricultural, and geographic data to identify drivers of malaria transmission. Heat maps combining these data were used to identify households with ongoing malaria transmission throughout the year.ResultsIn rural areas, Plasmodium prevalence was consistent between the dry and the rainy seasons, with roughly half of the population infected. In urban areas, malaria transmission indicators were lower, with a parasite prevalence of less than 20%, which remained comparable between the dry and the rainy season. The presence of irrigated crops and proximity to wetlands were associated with increased Anopheles exposure. By mapping Plasmodium infection and Anopheles exposure, two different types of hotspots of malaria transmission were identified: micro-geographical scale and local scale hotspots.ConclusionsThe presence of wetlands in urban areas and irrigated agriculture in rural areas resulted in heterogeneity in malaria transmission on a micro-geographical scale. These specific households present particular risk of malaria transmission and could fuel malaria transmission in surrounding households. The identification of micro-geographical areas using heat maps combining several epidemiological parameters can help to identify hotspots of malaria transmission. The implementation of malaria control measures, such as seasonal chemoprophylaxis or vector control, in these areas could help to reduce the incidence of malaria and facilitate its elimination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.