Abstract
The realm of board games presents a challenging domain for the application of artificial intelligence (AI), given their vast state-action space and inherent complexity. This paper explores the development of a proficient AI for Connect Four using DeepMind's AlphaZero algorithm. The algorithm employs a policy-value network for concurrent prediction of action probabilities and state values, and Monte Carlo Tree Search (MCTS) for decision-making, guided by the policy-value network. Through extensive self-play and data augmentation, our AI learns without the need for explicit prior knowledge. Our experiment demonstrated that the AI player showed significant capability in playing Connect Four, exhibiting strategic decision-making that sometimes-surpassed human performance. These results underline the potential of deep reinforcement learning in advancing AI performance in complex board games.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have