Abstract
Urban forests are becoming increasingly important for human well-being as they provide ecosystem services that contribute to improving well-being of city dwellers and to addressing climate change. However, despite their importance, there is an information gap in most of the world's urban forests due to the high cost and complexity of conducting standard forest inventories in urban environments. New technologies based on artificial intelligence can represent a smart and efficient alternative to costly traditional inventories. In this paper, we present an approach based on deep learning algorithms for the detection, counting, and geopositioning of trees using a combination of ground-level and aerial/satellite imagery. We tested several convolutional networks, exploring different combinations of hyperparameters and adjusting the query distance between ground-level images, detection radius, and various resolutions of satellite and aerial images. Our methodology is able to detect and accurately locate 79% of the urban street tree with a positional accuracy of 60 cm to the center of the canopy. Additionally, this approach allows us to determine the availability of photographs of urban trees, indicating from which Google Street View image each tree is visible. Our research provides a scalable and replicable solution to the scarcity of urban tree data and information worldwide, demonstrating the potential of artificial intelligence to revolutionize the way in which we inventory and monitor urban forests.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have