Abstract
We present theoretical analyses of and detailed timings for two programs which use high-order finite element methods to solve the Navier- Strokes equations in two and three dimensions. The analyses show that algorithms popular in low-order finite element implementations are not always appropriate for high-order methods. The timings show that with the proper algorithms high-order finite element methods are viable for solving the Navier-Stokes equations. We show that it is more efficient, both in time and storage, not to precompute element matrices as the degree of approximating functions increases. We also study the cost of assembling the stiffness matrix versus directly evaluating bilinear forms in two and three dimensions. We show that it is more efficient not to assemble the full stiffness matrix for high-order methods in some cases. We consider the computational issues with regard to both Euclidean and isoparametric elements. We show that isoparametric elements may be used with higher-order elements without increasing the order of computational complexity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have