Abstract

Abstract Various human problems are tried to resolve with biomimetic design which imitate biological forms. A biomimetic Carangiform robotic fish provides great benefits with flexible maneuverability, high propulsion efficiency and less noisy considering classical rotary underwater vehicles. This paper presents a dynamic simulation model of the Carangiform robotic fish with flexible multi-joint propulsion mechanism considered as an artificial spine system for two swimming cases. In order to swim like a real fish, multi-joint propulsion mechanism assumed a series planar hinge joints which represent vertebras is adjusted by optimizing with a new searching method which provides precise values as direct search methods. The flapping frequency and the speed are proportional with the tail link lengths and angles of the joints. Thus, the optimization parameters are selected as end point coordinates of the joints and lengths of the each link to imitate the real traveling body wave. Two possible route planning scenarios for the robotic fish model inspired from the Carangiform motion are performed. These scenarios are summarized by two cases. Case 1 is the free swimming mode permits to go straight forward until it faces an obstacle. The fish decides to the turning direction by using decision-making process when it encounters an obstacle and finds the way to turn. In the Case 2, the fish proposes to reach the destination area along the shortest path. When faced with obstacles, it overcomes obstacles and tries to reach the target in the shortest way again.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.