Abstract
There are several techniques implemented, in an underwater target tracking environment, for the nonlinear dynamic systems in Gaussian and non-Gaussian environments. It is assumed with non-Gaussian distribution to make the problem part of the non-Gaussian distribution, and is measured in terms of calculations of plenty of scenarios simulated to validate the potential of the sub-optimal filter.This research is further carried out by considering two categories of non-Gaussian noises i.e.a mixture of Gaussian noises and shot noise. To evaluate tracking in Gaussian and non-Gaussian noises, the suboptimal filters, Extended Kalman filter, and Unscented Kalman filter (UKF algorithms are considered. Gaussian noise is a statistical noise having probability density function equal to the normal distribution function. The suboptimal filters, Extended Kalman filter, and Unscented Kalman filter (UKF) algorithms are considered to evaluate tracking in Gaussian and non-Gaussian noises. To make further evaluation of the above said algorithms, they are compared with theoretical Cramer-Rao lower bound. The efficiency of UKF is in terms of percentage of non-Gaussian noise corrupted measurements, for which solution is obtained within a short time. The application of Monte-Carlo method at this simulations trapped accurate results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.