Abstract

IntroductionStem cell therapy has been gaining interest in the regeneration rather than repair of lost human tissues. However, the manual analysis of stem cells prior to implantation is a cumbersome task that can be automated to improve the efficiency and accuracy of this process. ObjectiveTo develop a Deep Learning (DL) algorithm for segmentation of human mesenchymal stem cells (MSCs) on micrographic images and to validate its performance relative to the ground truth laid down via annotation. MethodologyPre-trained DeepLab algorithms were trained on annotated images of human MSCs obtained from the open-source EVICAN dataset. This dataset comprises of partially annotated images; a limitation that is overcome by blurring backgrounds of these images which consequently blurs the unannotated cells. Two algorithms were trained on the two different kinds of images from this dataset; with blurred and normal backgrounds, respectively. Algorithm 1 was trained on 139 images with blurred backgrounds and algorithm 2 was trained on 37 images from the same dataset with normal backgrounds to replicate real-life scenarios. ResultsThe performance metrics of algorithm 1 included accuracy of 99.22%, dice co-efficient of 99.66% and Intersection over Union (IoU) score of 0.84. Algorithm 2 was 96.34% accurate with dice co-efficient and IoU scores of 98.39% and 0.48, respectively. ConclusionBoth algorithms showed adequate performance in the segmentation of human MSCs with performance metrics close to the ground truth. However, algorithm 2 has better clinical applicability, even with smaller dataset and relatively lower performance metrics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.