Abstract

Advance Encryption Standard (AES) supersedes Data Encryption Standard (DES) and is the best known and most widely used block cipher. As for now, there are no known practical attacks that would allow anyone to read correctly implemented AES encrypted data. However, several theoretical attacks have been announced until now. A theoretical attack called Biclique Attack is known to have broken Full AES and requires 2126.1, 2189.7, 2254.4 operations to recover an AES-128, AES-192, AES-256 respectively. Biclique Attack is faster than Brute force attack by a factor of four. As such, these theoretical attacks are of high computational complexity; they do not threaten the practical use of AES in any way. However, attacks always get better; they never get worse. As the technology evolves, successful attacks (using Quantum Computing and faster GPU) against AES may turn up, and they may be difficult to ignore. In this study, we aim to enhance the security prospects of AES with the inclusion of Dynamicity character in AES S-Box for increased resilience against Brute Force Attack and Biclique Attack, and hashing technique is combined with AES algorithm to achieve variance in security using MD4, SHA3 or SHA5. The novel key dispersion technique is introduced to increase the avalanche effect of AES algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.