Abstract

The paper presents the results of high-level synthesis (HLS) of multi-operand adders in FPGA using the Vivado Xilinx environment. The aim was to estimate the hardware amount and latency of adders described in C-code. The main task of the presented experiments was to compare the implementations of the carry-save adder (CSA) type multi-operand adders obtained as the effect of the HLS synthesis and those based on the basic component being 4-operand adder with fast carry-chain available in FPGA’s implemented in Verilog. However, the HLS synthesis simplifies the design and prototyping process but the received results indicate that the circuit obtained as the result of such synthesis requires twice more resources and is slower than its counterpart design using Verilog.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.