Abstract
Stroke and cerebral hypoxia are among the main complications during cardiopulmonary bypass (CPB). The two main reasons for these complications are the cannula jet, due to altered flow conditions and the sandblast effect, and impaired cerebral autoregulation which often occurs in the elderly. The effect of autoregulation has so far mainly been modeled using lumped parameter modeling, while Computational Fluid Dynamics (CFD) has been applied to analyze flow conditions during CPB. In this study, we combine both modeling techniques to analyze the effect of lumped parameter modeling on blood flow during CPB. Additionally, cerebral autoregulation is implemented using the Baroreflex, which adapts the cerebrovascular resistance and compliance based on the cerebral perfusion pressure.The results show that while a combination of CFD and lumped parameter modeling without autoregulation delivers feasible results for physiological flow conditions, it overestimates the loss of cerebral blood flow during CPB. This is counteracted by the Baroreflex, which restores the cerebral blood flow to native levels. However, the cerebral blood flow during CPB is typically reduced by 10–20% in the clinic. This indicates that either the Baroreflex is not fully functional during CPB, or that the target value for the Baroreflex is not a full native cerebral blood flow, but the plateau phase of cerebral autoregulation, which starts at approximately 80% of native flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.