Abstract

Impaired cerebral autoregulation may predispose patients to cerebral hypoperfusion during cardiopulmonary bypass (CPB). The purpose of this study was to identify risk factors for impaired autoregulation during coronary artery bypass graft, valve surgery with CPB, or both and to evaluate whether near-infrared spectroscopy (NIRS) autoregulation monitoring could be used to identify this condition. Two hundred and thirty-four patients were monitored with transcranial Doppler and NIRS. A continuous, moving Pearson's correlation coefficient was calculated between mean arterial pressure (MAP) and cerebral blood flow (CBF) velocity, and between MAP and NIRS data, to generate the mean velocity index (Mx) and cerebral oximetry index (COx), respectively. Functional autoregulation is indicated by an Mx and COx that approach zero (no correlation between CBF and MAP); impaired autoregulation is indicated by an Mx and COx approaching 1. Impaired autoregulation was defined as an Mx ≥0.40 at all MAPs during CPB. Twenty per cent of patients demonstrated impaired autoregulation during CPB. Based on multivariate logistic regression analysis, time-averaged COx during CPB, male gender, Pa(CO(2)), CBF velocity, and preoperative aspirin use were independently associated with impaired CBF autoregulation. Perioperative stroke occurred in six of 47 (12.8%) patients with impaired autoregulation compared with five of 187 (2.7%) patients with preserved autoregulation (P=0.011). Impaired CBF autoregulation occurs in 20% of patients during CPB. Patients with impaired autoregulation are more likely than those with functional autoregulation to have perioperative stroke. Non-invasive monitoring autoregulation may provide an accurate means to predict impaired autoregulation. Clinical trials registration. www.clinicaltrials.gov (NCT00769691).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call