Abstract
Appropriate data collection is an essential aspect of clinical trial (CT) quality and includes accurate and precise data entered into a case report form (CRF). The paper presents the results of risk assessment and modelling for the data collection process in the trial site. In research 292 CRF were analysed and CRF corrections documentation for 12 CT carried out in Clinical and Diagnostic Centre of the National University of Pharmacy (CDC NPhaU). In order to evaluate the rate of errors made in CRF we proposed a key risk indicator – error coefficient (k n ) with specific intervals of values: optimal (0-3); threatening (3,1-5); critical (more than 5). The model of the error coefficient changes was created by Monte-Carlo method and probability of critical values of the error coefficient was 0.026. The economic consequences for these cases were predicted by modelling on the basis of expert estimates regarding CT project time and required costs. Probability of the maximal project time increase to 4 days was 0.019; probability of maximal additional costs up to 3% of the budget was 0.02. The results obtained indicate the high quality of the data collection process in the CDC NPhaU. The method proposed may be recommended for sponsors for risk-based monitoring implementation, for trial sites preparing to monitoring visits, audits or inspections, for regulatory bodies for planning inspections of trial sites.
Highlights
Appropriate data collection is an essential aspect of clinical trial (CT) quality and includes accurate and precise data entered into a case report form (CRF)
The paper presents the results of risk assessment and modelling for the data collection process in the trial site
In order to evaluate the rate of errors made in CRF we proposed a key risk indicator – error coefficient with specific intervals of values: optimal (0-3); threatening (3,1-5); critical
Summary
The paper presents the results of risk assessment and modelling for the data collection process in the trial site. The results obtained indicate the high quality of the data collection process in the CDC NPhaU. Правильність, точність і повнота первинних даних, зареєстрованих у ІРФ, а також відповідність її заповнення вимогам GCP, протоколу та стандартним операційним процедурам (СОП) даного випробування є дуже важливою ланкою забезпечення якості результатів КВ [5]. Враховуючи взаємозалежність ключових характеристик процесу управління даними КВ – якість, час здійснення та необхідні ресурси, проблеми, які виникли на етапі реєстрації даних у ІРФ, вони можуть призвести до змін у графіку здійснення робіт у ході КВ, потребуючи подовження термінів, зростання витрат коштів та збільшення загального кошторису випробування.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have