Abstract

Implementation of the harmonically mapped averaging (HMA) framework in the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is presented for on-the-fly computations of the energy, pressure, and heat capacity of crystalline systems during canonical molecular dynamics simulations. HMA has a low central processing unit and storage requirements and is straightforward to use. As a case study, the properties of the Lennard-Jones and embedded-atom model (parameterized for nickel) crystals are computed. The results demonstrate the higher efficiency of the new class compared to the inbuilt LAMMPS classes for calculating these properties. However, HMA loses its effectiveness in systems where diffusion occurs in the crystal, and an example is presented to allow this behavior to be recognized. In addition to its improved precision, HMA is less affected by small errors introduced by having a larger time step in molecular dynamics simulations. We also present an analysis of the effect of potential truncation on anharmonic properties, and show that artifacts of truncation on the HMA averages can be eliminated simply by shifting the potential energy to zero at the truncation radius. Full properties can be obtained by adding easily computed values for the lattice and harmonic properties using the untruncated potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.