Abstract

Technological advancements have had a significant impact on the education sector, including the application of Convolutional Neural Networks (CNN) for facial image analysis. This research aims to implement CNN to measure students' learning concentration levels. The FER2013 dataset, which includes seven emotion classifications and comprises 28,709 images for training data, is used as the database. The data is processed through rescaling and augmentation to prepare the CNN model. The model consists of several convolutional layers, pooling layers, and fully connected layers designed to extract crucial features from facial images. Evaluation results demonstrate a very high accuracy of 94.95% on training data, indicating that the model effectively recognizes complex patterns within the data. Although there is a higher loss value of 157% and a decreased accuracy of 62.75% on validation data, this suggests that the model possesses a strong foundational capability and can still be improved through further adjustments. With high accuracy in training and promising validation results, the model shows substantial potential for real-world application, where it can assist teachers in understanding students' emotional responses in real-time. The implementation of CNN aids educators in comprehending students' emotional responses and adapting their teaching methods more effectively, thereby creating a more conducive learning environment and enhancing students' academic and social development. These findings also open opportunities for further research to improve the performance and generalization of the model on unseen data, making this technology an increasingly reliable tool in education

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.