Abstract

The optimized high-order compact (OHOC) finite difference schemes, proposed as central schemes are used for aeroacoustic computations on interior nodes. On near-boundary nodes, accurate non-central or one-sided compact schemes are formulated and developed in this paper for general computations in domains with non-periodic boundaries. The near-boundary non-central compact schemes are optimized in the wavenumber domain by using Fourier error analysis. Analytic optimization methods are devised to minimize the dispersion and dissipation errors, and to obtain maximum resolution characteristics of the near-boundary compact schemes. With the accurate near-boundary schemes, the feasibility of implementing physical boundary conditions for the OHOC schemes are investigated to provide high-quality wave solutions. Characteristics-based boundary conditions and the free-field impedance conditions are used as the physical boundary conditions for direct computations of linear and nonlinear wave propagation and radiation. It is shown that the OHOC schemes present accurate wave solutions by using the optimized near-boundary compact schemes and the physical boundary conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.