Abstract

For heat transfer measurements on the center blade of a linear cascade, the infrared measurement technique was set up. As a highly challenging condition, the angular dependency of the infrared signal was identified. Beside a shallow angle of view, limited by geometric conditions, the curved blade surface necessitated the consideration of this dependency. Therefore, a powerful in-situ calibration method was set up, which accounts for the angular dependency implicitly. In contrast to usual procedures, the correlation of the measured infrared intensity and the temperature was calibrated by a separate calibration function for each position on the blade. In all, three different calibration approaches were proceeded and assessed. Initial measurements in low-speed test conditions delivered physically more reasonable results, using a local calibration compared to a usual global calibration. By means of these data, an evaluation of the aerodynamic characteristic of the cascade was enabled. With few modifications, the procedure is capable to deliver high-precision heat transfer measurements in the high-speed cascade wind-tunnel at the Institute of Jet Propulsion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.