Abstract

Engine companies typically emphasize research which has been conducted at conditions as close to engine conditions as possible. This focus on engine relevant conditions often causes difficulties in University research laboratories. One particularly difficult testing regime is high speed but low Reynolds number flows. High speed low Reynolds number flows can occur in both low pressure turbines under a normal range of engine operating conditions and in high pressure turbines run at very high altitudes. This paper documents a new steady state closed loop wind tunnel facility which has been developed to study high speed cascade flows at low Reynolds numbers. The initial test configuration has been representative of a first stage vane configuration for a UAV turbofan which flies at a very high altitude. The initial test section was configured in a three full passage four-vane linear cascade arrangement with upper and lower bleed flows. Both heat transfer and aerodynamics loss measurements were acquired and are presented in this paper. Heat transfer measurements were taken at a Reynolds number of 720,000 based on true chord and exit conditions at Mach numbers of 0.7, 0.8, and 0.9. Exit survey measurements were conducted at a chord exit Reynolds number of 720,000 over a similar range in Mach numbers. However, this facility has the capability to run at chord Reynolds numbers of 90,000 or below in the present configuration which uses an approximately three times scale test vane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.