Abstract
The creation of spacecraft propulsion systems with high energy efficiency and minimal weight and size parameters is an urgent scientific and technical task of the domestic rocket engine industry. At the same time, requirements are put forward to optimize the cost and time of design, development and manufacturing of engines, as well as environmental safety at all stages of the product life cycle. In this regard, it is proposed to use advanced laser 3D printing technologies (additive technologies) from metal powder using CAD models of engine parts in the production of space low thrust rocket engines (LTRE). Laser melting technology on modern 3D printers makes it possible to produce complex monolithic engine structures without the use of labor-intensive and resource-intensive operations of machining, welding, and soldering, as well as a significant reduction in the volume of plumbing, assembly, control and measuring work, and a decrease in the influence of some non-production factors. The article discusses issues of practical application of promising technologies in the creation of LTRE. The results of fire tests are presented, which will be used to refine the previously developed calculation models of oxygen-hydrogen LTRE when creating advanced rocket engines for spacecraft. The object of the study was an experimental sample of LTRE with a nominal thrust of 150 N using gaseous fuel components oxygen and hydrogen, developed and manufactured using additive technology. The experimental LTRE is considered as a prototype of the engine for orientation, stabilization and launching of the oxygen-hydrogen upper stage. The purpose of the work is to study the effectiveness of previously unexplored design solutions for organizing mixture formation and cooling of an oxygen-hydrogen LTRE, to determine their influence on the perfection of the working process and the thermal state of the engine chamber. Fire tests were carried out in single switching mode with a duration sufficient for the LTRE chamber to reach a stationary thermal regime, with the determination of the energy characteristics and thermal state of the structure.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have