Abstract

Monoclonal antibodies (mAbs) are pioneers in the diagnosis and treatment of many diseases, such as cancer, asthma, poisoning, viral infections, etc. As the market value of mAbs increases in the biopharma industry, the demand for high quantities is met by upscaled production using bioreactor systems. Thus, disposable, porous matrices called cryogels have gained the primary focus for adherent support in the proliferation of hybridoma cells. In this study, a gelatin-immobilized polyhydroxyethylmethacrylate-based cryogel material (disc-shaped, 9 mL bed volume) was synthesized, and a mini-bioreactor set up developed for culturing hybridoma cells to produce mAbs continuously. The hybridoma clone, 1B4A2D5, secreting anti-human serum albumin monoclonal antibodies, was immobilized in the cryogel matrix (2 discs, 18 mL bed volume). The hybridoma cells were attached to the matrix within 12 h after inoculation, and the cells were in the lag phase for seven days, where they were secreted mAb into the circulation medium. During the initial exponential phase, the glucose consumption, lactic acid production, and mAb production were 3.36 mM/day, 3.67 mM/day, and 55.61 µg/mL/day, respectively. The medium was refreshed whenever the glucose in the media went below 50% of the initial glucose concentration. The cryogenic reactor was run continuously for 25 days, and the mAb concentration reached a maximum on the 17th day at 310.59 µg/mL. The cumulative amount of mAbs produced in 25 days of running was 246 µg/mL, 7.7 times higher than the mAbs produced from T-flask batch cultivation. These results demonstrate that the developed polyhydroxyethylmethacrylate-based cryogel reactor can be used efficiently for continuous mAb production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.