Abstract

The advanced thermal-hydraulic system code, System Analysis Module (SAM), was originally developed for the modeling of single-phase flow in advanced reactors. It has since been expanded to include a four-equation drift flux model for the modeling of two-phase flows containing a noncondensable gas. The model was expanded to support the modeling of molten salt reactor (MSR) designs in which the fuel is directly dissolved in the circulating coolant. These designs have shown that circulating gas bubbles can play an important role in the management of fission products and the operational behavior of the reactor. A drift flux model was implemented to more accurately capture the localized behavior of the void in the core and its impact on the mass transfer of fission products. A thorough assessment of the new model was performed by developing a verification and validation test suite. Verification problems were designed to test all major terms in the new governing equations. The new model converged to the correct solution at the expected order of accuracy for all verification cases. The validation cases included a wide range of flow and void conditions in different pipe geometries. Although higher void experiments show a slight underprediction of void by the drift flux model, experiments that aim to reproduce Molten Salt Reactor Experiment (MSRE) experimental conditions show good agreement with the model. The gas transport model was activated for a SAM model of the MSRE to demonstrate that it can be used in a more complex model. This gas transport model will be used along with an interfacial area transport equation being implemented in SAM for the prediction of mass transport behavior in MSR conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.