Abstract

Multivariable control allows controller designs that can provide decoupled command tracking and robust performance in the presence of modeling uncertainties. Although the last two decades have seen extensive development of multivariable control theory and example applications to complex systems in software/hardware simulations, there are no production flying systems aircraft or spacecraft, that use multivariable control. This is because of the tremendous challenges associated with implementation of such multivariable control designs. Unfortunately, the curriculum in schools does not provide sufficient time to be able to provide an exposure to the students in such implementation challenges. The objective of this paper is to share the lessons learned by a practitioner of multivariable control in the process of applying some of the modern control theory to the Integrated Flight Propulsion Control (IFPC) design for an advanced Short Take-Off Vertical Landing (STOVL) aircraft simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.